What’s New with the Cloud?

A quick look at the evolution
and possible future of cloud computing

A view from the past 10 years of working on and using cloud technology

Dennis Gannon, Professor Emeritus, SOICE
Outline

• Defining a cloud
 • Public, Private, Hybrid, Research, Academic, ...

• The software
 • The evolution of services and cloud-native programming models

• The data centers
 • From racks of PCs to planetary-scale special supercomputers

• The future
 • AI and the Edge
What is the Cloud?
Defining the cloud

• Let’s ask Google, Bing and Alexa: “What is the cloud?”

cloud
[kloud]

NOUN

1. a visible mass of condensed water vapor floating in the atmosphere, typically high above the ground:
"the sun had disappeared behind a cloud" • [more]

2. a state or cause of gloom, suspicion, trouble, or worry:
"the only cloud to appear on the horizon was Leopold's unexpected illness" • [more]

3. a network of remote servers hosted on the Internet and used to store, manage, and process data in place of local servers or personal computers:
Better answers?

• The “Cloud” began life as the place Google did the analysis of all of its data and where they stored their index (1998)

• The gold rush for “on-line” drove data centers.
 • Google, Microsoft, Amazon, Yahoo! ...
 • Services: web search, games and email

• The breakthrough in 2006:
 • Amazon AWS S3 blob storage as a service
 • AWS EC2 virtual machines as a service.
 • “the combined technologies of S3, EC2 and Mechanical Turk represented the culmination of 11 years of web-scale computing" – Jeff Bezos 2006
 • Microsoft Azure 2008 ... released 2010.
Types of Clouds

• “public clouds” vs “private” vs “science private clouds”
 • Public = anybody with a credit card has access. (aka commercial cloud)
 • Private = restricted to a special group of users. (aka Community Cloud or Academic Cloud)
 • (In Europe these terms are often reversed based on ownership.)

• Examples:
 • Amazon Web Services (AWS) - 40% of all cloud resources on the planet.
 • Microsoft Azure – about 1/3 of AWS but growing
 • Google Cloud – third place
 • IBM Bluemx - growing
 • NSF JetStream – an OpenStack private cloud for US science researchers.

• There are many more clouds.
 • Public: Salesforce, DigitalOcean, Rackspace, 1&1, UpCloud, CityCloud, CloudSigma, CloudWatt, Aruba
 • Private Research Clouds: Aristotle, Bionimbus, Chameleon, RedCloud, indigo-datacloud, EU-Brazil Cloud, European Open Science Cloud

• What are the pros and cons of public vs private
Pros & Cons of Public vs Private Cloud

• **Public cloud pros**
 • Massive scale
 • Huge and growing list of services
 • Highly competitive on pricing due to economies of scale
 • Physical Security is strong
 • Freedom from managing hardware
 • Hardware constantly upgraded

• **Cons**
 • Rules prohibit moving data to cloud
 • Funding models may make it hard to use
 • Fear of “vendor Lock-In”
 • Securing your data is still up to you

• **Private cloud pros**
 • May be cheaper
 • You can keep it off the Internet so data can be very safe.
 • You can optimize your own hardware
 • You control everything
 • Fun for systems research

• **Cons**
 • You are responsible for everything
 • Not as many high level services
 • May not really be cheaper
 • You manage physical and system security
Azure and AWS Now Global Scale
Software

The true essence of “cloudiness”
Cloud Services

• **on-demand access to**

 • Data storage: blob, file, unstructured, SQL, global, ...

 • Raw computer: VM, cluster, GPU

 • App services: Basic web hosting, mobile app backend

 • Streaming data: IoT data streams, web log streams, instruments

 • Security services: user authentication, delegation of authorization, privacy, etc.

 • Analytics: database, BI, app optimization, stream analytics

 • Integrative: networking, management services, automation
Clouds are all about Services - Here is Azure
A brief look at three big services

- **Azure Cosmos Database**
 - 4 modes
 - Documents, key-value
 - Graph, NoSQL
 - 5 consistency models
 - Eventual, consistent prefix
 - Session, bounded stateless
 - Strong consistency
 - 99.9% less than 15ms latency
 - Strong SLA
 - Pay only for what you use
 - Planet scale

A globally-distributed, multi-model database service
Cosmos DB global and local distribution

Azure Cosmos DB Container

Partition set

Replica-set

East US

West US (current write region)

Central India

Global distribution

Local distribution

Replicate data globally

Click on a location to add or remove regions from your Azure Cosmos DB account.

* Each region is billable based on the throughput and storage for the account. Learn more
Another Example: Amazon Kinesis

• A service to build data stream analytics
• Three components
 • Data ingest from external devices: Kinesis Streams, or Firehose
 • Kinesis Analytics
• Trivial to configure from AWS portal.
Machine Learning Services

- IBM Watson, Cortana Intelligence, Google ML services, AWS ML
 - State of the art computer vision
 - Sophisticated text analysis
 - Automatics language translation
 - Tools to compose new ML tools
- The focus of cloud tech investment

Azure ML
Google Cloud ML
How do you build these planet scale service?

• Requirements:
 • Global scale => distributed => well defined and usable consistency models
 • Dynamic scaling to support 1000s of concurrent peak time users.
 • You must assume the infrastructure is constantly failing
 • But your app must stay up!
 • Designed so that upgrade and test occur seamlessly while app is running.
 • Security and Privacy not afterthoughts.

• A style of application construction has evolved to support this.
 • *Cloud Native*
Cloud Native Applications

• Build app from the ground up from small, stateless “microservice” containers or functions
 • Supports scalable parallelism
 • Rapid application modification and evolution
 • Easily distributed to provide fault tolerance

• Examples:
 • Netflix, Facebook, Twitter, Google Docs
 • Azure CosmosDB – billions of transactions per week
 • Azure Event hub – trillions of requests per week
 • Azure Cortana – 500 million evals/sec
 • Azure IoTHub, Skype, Power BI, CRM Dynamics
 • AWS Kinesis
How to Managing 1000s of Microservices?

- You need a service that can
 - Schedule containers across dozens of data centers
 - Handle fault monitoring and replication
 - Scale up and down when needed
 - Manage network proxies

- Kubernetes released by Google
 - Becoming a standard.
 - Supported on Google, AWS, Azure, IBM, ...

- Mesos, Swarm are similar.

Azure service fabric
Serverless Computing

• When I use a cloud service like CosmosDB or Kinesis do I need to allocate a server and deploy a virtual machine?
 • Of course not. Just configure it from the portal and use it.

• What if I have a simple function that I want to run every time I a particular “event” happens:
 • a file in the file service is modified
 • A specific external event is sent to a cloud event stream
 • Somebody added a file to a Github repository.
 • It is 2:00 pm.

• What are my choices?
 • Create a VM or container with my function and run it continuously.
 • But I don’t want to pay for it when it is being idle.
Serverless Functions as a Service

- AWS Lambda, Azure Functions, Google Functions, IBM OpenWhisk
- short-running, stateless computation
- driven by “triggers”
- scales up and down instantly and automatically
 - Can have hundreds of instances responding to events at once.
- based on charge-by-use
- Easy to configure from cloud portal
The evolution of the data center
Huge strides and experiments

- Early days: 2005
 - Very simple servers
 - Network outward facing poor interconnect
- 2008-2016
 - **Software defined networks**
 - Special InfiniBand sub networks
 - Many different server types
 - 2 cores to 32 cores to GPU accelerations
 - Efficiency experiments
 - Geothermal, wind, wave
 - Containerized server
Hardware direction

• Currently driven by advanced compute intensive on-line apps
 • Voice recognition and language translation
 • Image recognition
 • Search and analysis

• Machine learning a major driver
 • 2 phases: training and inference (prediction)
 • Specialized processor nodes are needed.
Google Tensorflow chip

• optimize the response time of NN inference

From: In-Datacenter Performance Analysis of a Tensor Processing Unit, Norman P. Jouppi et al.
Hardware Microservices on FPGAs [MICRO’16]

Interconnected FPGAs form a separate plane of computation
Can be managed and used independently from the CPU

Where Things are Headed
Cloud as Supercomputer?

• Not really:
 • Cloud is optimized for fast response for *services* supporting many concurrent clients.
 • Supers are optimized for fast execution of *programs* on behalf of a small number of users.

• But there is some convergence:
 • Better cloud networks to improve bisection bandwidth and reduce latency
 • Addition of cloud GPUs and other special hardware
 • When supercomputers scale they will learn to understand fault tolerance.
The Edge and the Fog

• We content distribution networks
 • Deliver cached content quickly

• But we need more than content
 • The edge contains compute capability
 • Call it the fog of small servers each managing hundreds of devices
 • Preprocess events from local devices and respond quickly if needed

• Can we push/migrate lambda functions or microservices from the data center to the edge?

• Can we extend the cloud fabric easily to the “fog” nodes?
Machine Learning Services will Become Amazing

• The rise of the digital assistants represent convergence of current cloud research
 • Echo/Alexa, Seri, Ask Google, Cortana
 • Cloud ML has extended our senses, but not our ability to reason.

• But it is not AI.
 • “Deep Learning Isn't a Dangerous Magic Genie. It's Just Math” - Oren Etzioni
Actual AI services?

• When can Alexa pass a 4th grade science exam?
 • Check out Aristo from Allen Institute for AI. They are getting close.

• The goal for Alexa, Seri, Google, Cortana:
 • A truly smart assistant.
 • Seri: Please find the Higgs boson in this data.

• Another goal: Driverless Car
 • Likely available everywhere by 2025

• What next?
The Ultimate Edge of the Cloud
Shameless Self-promotion

• The book “Cloud Computing for Science and Engineering”

• by Ian Foster an Dennis Gannon, published by MIT Press.

• Online here:
 • https://Cloud4SciEng.org